If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(2x^2+3x)=10
We move all terms to the left:
2(2x^2+3x)-(10)=0
We multiply parentheses
4x^2+6x-10=0
a = 4; b = 6; c = -10;
Δ = b2-4ac
Δ = 62-4·4·(-10)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-14}{2*4}=\frac{-20}{8} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+14}{2*4}=\frac{8}{8} =1 $
| 0=4x^2-16x-84 | | -3/5x+4=-7/5x-4/3 | | 2(2x^2+3x=10 | | 3^x^+^2+1=55 | | -10=y/11-3 | | 4x3+57=0 | | 6x+52=2x+4 | | 2(3x-5)=28+3x+4 | | 120=10j | | g(12)=6(2)^12 | | 81^x+2=3^3x+1 | | .35x=700 | | 3x=24=72 | | 1/6(x+12=-4 | | 7+1(-6x-5)=8 | | 0.25x=4x-8 | | 4^x+2=17 | | 3x-2x+7=1 | | .75y=3.00 | | -10t+9=107 | | Z^2+10x+2=2x+5 | | 10-x9=35 | | x^2+28x-1048=0 | | 4=v/2+2 | | 2(22-2y)+1=y | | 22-2(2x+1)=x | | 22-2=(2x+1) | | 8x/3=-30 | | 7=-6/x | | (72+x)/2=70 | | 72+x/2=70 | | -4=a-3 |